Time: 1.30 Hour
Marks: 80

Answer all the question:

PART-A (2 MARKS)

1. An electron is confined in a one-dimensional potential box of width 0.1nm. The minimum momentum of electron inside the box is?
 a) 0.5×10^{-24} kgms$^{-1}$
 b) 13.6×10^{-24} kgms$^{-1}$
 c) 6×10^{-25} kgms$^{-1}$
 d) 10.27×10^{-25} kgms$^{-1}$

2. A particle is described by the wave function
 \[\psi(x) = N x e^{-\lambda x} \quad x > 0 \]
 \[= 0 \quad x < 0 \]
 The normalized constant N is.
 a) $2 \lambda^{\frac{1}{2}}$
 b) $2 \lambda^{2}$
 c) $2 \lambda^{\frac{3}{2}}$
 d) $\lambda^{\frac{1}{2}}$

3. Consider an electron in a one-dimensional potential box of width 1\(\mu \)m within rigid boundary conditions. The ground state energy of electron is __________
 a) $2 \times 10^{-2} eV$
 b) $3.7 \times 10^{-7} eV$
 c) $2 \times 10^{-16} eV$
 d) $2.2 \times 10^{-5} eV$

4. Which of following is/are the eigen states of the linear momentum operator \(\hat{P}_x \).
 i) $A e^{ikx}$
 ii) $A (\sin kx + \cos kx)$
 iii) $A \cos kx$
 iv) $A e^{-ikx}$
5. The condition for operator \hat{A} and \hat{B} are Hermitian operator is
a) \hat{A} and \hat{B} both are identity operator
b) \hat{A} and \hat{B} both are unitary operator
c) \hat{A} and \hat{B} not commute
d) \hat{A} and \hat{B} commute

6. The commutator of $[L_x, r^2]$ is
a) $2i\hbar x$

b) 0

c) $-i\hbar L_x$

d) $i\hbar L_x$

7. The value of L^2 is measured as $12\hbar^2$. If L_z measured, then what possible values can result?

a) $\frac{3}{2}\hbar$, $\frac{1}{2}\hbar$, \hbar, $-\frac{1}{2}\hbar$, $-\frac{3}{2}\hbar$

b) $6\hbar$, $3\hbar$, \hbar, 0, $-\hbar$, $-3\hbar$, $-6\hbar$

c) $3\hbar$, $2\hbar$, \hbar, 0, $-\hbar$, $-2\hbar$, $-3\hbar$

d) $\frac{11}{2}\hbar$, $\frac{9}{2}\hbar$, $\frac{7}{2}\hbar$, $\frac{5}{2}\hbar$, $\frac{3}{2}\hbar$, $\frac{1}{2}\hbar$

8. For angular momentum quantum number $J = \frac{3}{2}$, allowed values of m are $\frac{3}{2}$, $\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{3}{2}$.

So, there are four basis states are possible, then the matrix elements of J_z^2 is

a) \hbar^2

b) \hbar^2

c) \hbar^2

d) \hbar
9. Read the following statements and choose incorrect one.
 a) The degenerate perturbation theory provides the study of the \(n = 2 \) states of a hydrogen atom inside an electric field.
 b) In a hydrogen atom all four \(n = 2 \) states have the same energy.
 c) The lifting of degeneracy when the atom is placed in an electric filed is called the Stark effect.
 d) Pattern of Stark splitting of hydrogen atom in \(n = 2 \) state shows that fourfold degeneracy is completely lifted by the perturbation.

10. The wavelength of a thermal neutron of speed \(v \) that corresponds to room temperature \(T = 300 \) K is.
 a) 0.55 Å b) 1.45 Å c) 2.55 Å d) 2 Å

11. Which of the following is/are not a properties of a valid wavefunction (\(\psi \))?
 1) \(\psi \) must single valued
 2) \(\psi \) must continuous
 3) \(\psi \) must differentiable
 4) \(\psi \) must square integrable
 a) i and iv
 b) i, ii and iv
 c) i, ii, iii, & iv
 d) none of the above

12. Justify which of the following wave function defined for interval \(0 \leq x < \infty \) could be a valid wavefunction or not.
 \(P \) \(\Psi(x) = x \)
 \(Q \) \(\Psi(x) = e^{-x^2} \)
 a) \(P \) - valid wave function, \(Q \) - valid wave function
 b) \(P \) - valid wave function, \(Q \) – not a valid wave function
 c) \(P \) – not a valid wave function, \(Q \) - valid wave function
 d) \(P \) – not a valid wave function, \(Q \) – not a valid wave function
13. The wave function for a particle confined to a region $0 \leq x \leq a$ in the ground state was found to be
\[\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} \]
The probability that the particle is found in the interval $\frac{a}{2} \leq x \leq \frac{3a}{4}$ is
a) $\frac{\pi+2}{4\pi}$ b) $\frac{\pi+4}{2\pi}$ c) $\frac{\pi+2}{3\pi}$ d) $\frac{\pi+4}{6\pi}$

14. The sampling property of the Dirac Delta function is represented as
a) $\int_{-\infty}^{\infty} \delta(x-a)f(x)\,dx = f(0)$ b) $f(x)\delta(x-a) = f(a)\delta(x-a)$
c) $\int_{-\infty}^{\infty} \delta(x)f(x)\,dx = f(0)$ d) $\delta(ax) = \frac{1}{|a|}\delta(x)$

15. If $|\psi\rangle, |\varphi\rangle$ be two vectors belonging to a complex vector space then $\langle \psi | \varphi \rangle = 0$ say that
a) the vectors satisfies Cauchy-Schwartz Inequality
b) the vectors are normal
c) they are Orthonormal Vectors
d) the vectors are orthogonal

16. The commutator $[H, a] =$
 a) $-\hbar \omega$ b) $\hbar \omega \dagger$ c) -1 d) 1

17. The commutator $[J_2, J_+]=?$
 a) $2i\hbar J_+$ b) $2i\hbar J_+^\dagger$ c) $-2i\hbar J_+$ d) $\hbar J_+$

18. The state of a hydrogen atoms is $\varphi = \frac{1}{\sqrt{2}} \psi_{1s} + A\psi_{2p} + \frac{1}{\sqrt{8}} \psi_{3s}$, then the value of A for which that the state is normalized is
a) $\sqrt{\frac{3}{8}}$ b) $\sqrt{\frac{1}{8}}$
c) $\sqrt{\frac{3}{2}}$ d) $\sqrt{\frac{3}{4}}$
19. The angular momentum operator acts on a state $\psi(r, \theta, \varphi)$ as

\begin{align*}
\text{a) } L^2 \psi &= \hbar^2 l(l + 1)\psi \\
\text{b) } L\psi &= \hbar l(l + 1)\psi \\
\text{c) } L\psi &= \hbar^2 l(l + 1)\psi \\
\text{d) } L\psi &= \hbar^2 l(l - 1)\psi
\end{align*}

Choose the correct option about following statements

A) The energy levels of the one-dimensional harmonic oscillator are not equally spaced
B) The energy levels of the one-dimensional harmonic oscillator are not degenerate

a) both are correct
 b) both are incorrect
 c) A is correct, B is incorrect
 d) A is incorrect, B is correct

20. The scattering of a black disk at high energies the ratio of Classical total cross section to the quantum total cross section is

\begin{align*}
\text{a) } 1/2 \\
\text{b) } 2 \\
\text{c) } 3/2 \\
\text{d) } 4/3
\end{align*}
Welcome to K.S Academy, Salem

- **Our vision** is to provide positive learning experience so student becomes competent.

- **Our mission** is to maximize student career opportunities.

<table>
<thead>
<tr>
<th>OUR SPECIALTIES</th>
<th>OUR SPECIALTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Time Saving Short Tricks For problem questions & Reasoning</td>
<td>• Best question paper for complete preparation. (no repeated questions)</td>
</tr>
<tr>
<td>• High quality lecturer</td>
<td>• Experienced and expert faculty (1st rank holder in 3 different TRB exams)</td>
</tr>
<tr>
<td>• Slip test, unit test, two-unit combined test, one third test, half test, and full test</td>
<td>• Mock tests and accuracy test for every unit</td>
</tr>
<tr>
<td>• Quality of questions has the TRB Level and also higher level than TRB level</td>
<td>• KS Academy is committed to the development of our students</td>
</tr>
<tr>
<td>• 2 Trial Classes Before Admission</td>
<td>• 7 years of TRB coaching experience and many success stories (more than 50 students)</td>
</tr>
</tbody>
</table>

NEW BATCH-3 STARTS ON 16.09.2018 SUNDAY
2018 Batch Schedule

- The class begins **promptly** at 9:45 a.m. and ends at 4:30 p.m.
- Students are expected to attend a minimum of **six months**.
- The results will be available **immediately** after the test.

<table>
<thead>
<tr>
<th>Month/Week</th>
<th>Topics Covered</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>September / Week-4</td>
<td>Fermy-Dirac statistics – phase transition - phase space - ensembles- equipartition of energy.</td>
<td>7</td>
</tr>
<tr>
<td>October / Week-1</td>
<td>Statistical Mechanics- test & Gauss law – Poisson’s equation – Laplace equation - boundry value problem - dielectric media –</td>
<td>7</td>
</tr>
<tr>
<td>October / Week-2 & 3</td>
<td>Vector – B and H in a magnetic material – Maxwell’s equations- Poynting theorem – Relativistic Mechanics</td>
<td>14</td>
</tr>
<tr>
<td>October / Week-4</td>
<td>Electromagnetic theory & Relativistic Mechanics test & Vector Fields- Stokes</td>
<td>7</td>
</tr>
<tr>
<td>Date / Week</td>
<td>Topics</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>November / Week 1</td>
<td>Theorem and Gauss theorem</td>
<td>7</td>
</tr>
<tr>
<td>November / Week 2</td>
<td>Matrix theory - orthogonal. Hermitian and symmetric matrices. Special functions - Gamma and Beta functions</td>
<td>7</td>
</tr>
<tr>
<td>November / Week 3</td>
<td>Unit - I test & Semi empirical mass formula - Alpha decay – B decay - Liquid drop model – Shell model – Collective models.</td>
<td>7</td>
</tr>
<tr>
<td>November / Week 4</td>
<td>Nuclear Instrumentation - Nuclear reactors – Neutron cross section – Fission product</td>
<td>7</td>
</tr>
<tr>
<td>November / Week 4</td>
<td>Nuclear physics test & Digital electronics - Number system - Flip-flops - counters - registers</td>
<td>7</td>
</tr>
<tr>
<td>December / Week 1 & 2</td>
<td>Operational amplifier - Sample and hold circuits – Oscillator - multivibrators – Clipping and clamping circuits</td>
<td>14</td>
</tr>
<tr>
<td>December / Week 3</td>
<td>Electronics part - I test & Lagrangian equation of motion – Hamiltonian equation – Principle of least action</td>
<td>7</td>
</tr>
<tr>
<td>December / Week 4</td>
<td>Theory of small oscillations - Rigid bodies</td>
<td>7</td>
</tr>
<tr>
<td>January / Week 1</td>
<td>Classical mechanics test & Probability and Theory of errors - Principle of least squares – Curve fitting</td>
<td>7</td>
</tr>
<tr>
<td>January / Week 2</td>
<td>Group theory</td>
<td>7</td>
</tr>
<tr>
<td>January / Week 3</td>
<td>Unit 2 test & Rotation spectra – Vibration spectra - Raman Spectra</td>
<td>7</td>
</tr>
<tr>
<td>January / Week 4</td>
<td>Electronic state of diatomic molecules – Frank-Condon principle - NMR</td>
<td>7</td>
</tr>
<tr>
<td>February / Week 1</td>
<td>Spectroscopy test & Microprocessor</td>
<td>7</td>
</tr>
<tr>
<td>February / Week 2</td>
<td>Microwave generation – Klystron – Magnetron – Travelling wave tubes - Antenna</td>
<td>7</td>
</tr>
<tr>
<td>February / Week 3</td>
<td>Electronics part-2 test & density of states in one, two and three dimensions – Electrical and Thermal conductivities - Bloch theorem - Krong-Penny model – Brillouin zones</td>
<td>7</td>
</tr>
<tr>
<td>Month / Week</td>
<td>Topics</td>
<td>Total</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>February / Week 4</td>
<td>Thermal Properties of solids- Magnetic properties of materials- superconductivity</td>
<td>7</td>
</tr>
<tr>
<td>March / Week 1 & 2</td>
<td>Solid state physics test & Schrodinger’s wave equation – Free particle – Particle in a potential well - Wave packet – Uncertainty principle – Linear Harmonic oscillator – angular momentum</td>
<td>14</td>
</tr>
<tr>
<td>March / Week 4</td>
<td>Quantum mechanics test & and two half test</td>
<td>12</td>
</tr>
<tr>
<td>April, May</td>
<td>Full test-1,2,3,4,5,6,7,8,9, 10</td>
<td>48</td>
</tr>
</tbody>
</table>

K.S Academy, Salem

way to success

COACHING CENTRE FOR PHYSICS

(PG, POLY, ENG, AEEO TRB & TNSET)

Contact: 9047767620, 9042976707 & 8148891005

2018 III-BATCH DEMO CLASS ON 16.09.2018 (SUNDAY)
NEW BATCH-3 DEMO CLASS ON 16.09.2018 SUNDAY

K.S ACADEMY, SALEM
PG TRB, POLYTECHNIC, ENG TRB, AEEO TRB & TNSET
COACHING CENTRE FOR PHYSICS

ANSWER KEY - QUANTUM MECHANICS

2.1. Key word: minimum momentum

\[\Delta p_x = \frac{\hbar}{2\pi} \]

\[\Delta p_x = \frac{1.054 \times 10^{-34}}{2 \times 0.1} \]

\[= \frac{1.054 \times 10^{-34}}{2 \times 1.0 \times 10^{-10}} \]

\[= 5.27 \times 10^{-24} \text{ kg m/s} \]

\[\text{Opt: (C)} \]

2.2. Normalisation constant

\[\int_0^\infty |\psi(x)|^2 dx = 1 \]

\[N^2 \int_0^\infty x^2 e^{-x^2} dx = 1 \]

\[N^2 \frac{2^1}{(2^1)^{3/2}} = 1 \]

\[N = 2^{1/2} \]

\[\text{Opt: (C)} \]

3. Key word: width = 1 \mu m

\[R_n = \frac{n^2 \hbar^2 m_1^2}{2\pi l^2} \text{ (KS sir short cut)} \]

Use short cut we get

\[\text{Anis: } 3.7 \times 10^{-7} \text{ eV} \]

\[\text{Opt: (b)} \]

4. Eigen state of linear momentum operator

\[\hat{p}_x = -i\hbar \frac{d}{dx} \]

(3) \[A e^{ikx} = -i\hbar \frac{d}{dx} (A e^{ikx}) \]

\[= i\hbar k A e^{ikx} \]

So it is an eigen state.

K.S ACADEMY, SALEM PG TRB, POLYTECHNIC TRB & TNSET COACHING CENTRE FOR PHYSICS
CELL: 9042976707, 9047767620
ANSWER KEY - QUANTUM MECHANICS

- **Q4.** \(A e^{-ikx} \)
 - Operate by momentum operator.
 - \(-ik \frac{d}{dx} (A e^{-ikx}) \)
 - \(= -\frac{1}{\hbar} k e^{ikx} \)
 - Ans: opt (d)

- **Q8.** Use angular momentum matrix formula.
 - Ans: b

- **Q9.** Ans: d

- **Q10.** Ans: b

- **Q11.** Key word: not a property of 4.
 - Ans: d

- **Q12.** 4 must be single valued so.

- **P1.** \(4(x) = x \)
 - If \(x \to \infty \), \(4 \to \infty \)
 - Hence not a valid wave function.

- **P2.** \(4(x) = e^{-x^2} \)
K.S ACADEMY, SALEM
PG TRB, POLYTECHNIC TRB, AEEO TRB & TNSET
COACHING CENTRE FOR PHYSICS

ANSWER KEY - QUANTUM MECHANICS

Q. 17
Ans: a

Q. 18
If φ is normalized, then
\[\int \phi^* \phi \, dm = 1 \]
\[\frac{1}{2} + A^2 + \frac{1}{8} = 1 \]
\[A^2 = \frac{5}{8} \]
\[A = \sqrt{\frac{5}{8}} \]
Ans: a

Q. 19
Ans: a

Q. 20
\[\frac{\text{Classical}}{\text{Quantum}} = \frac{1}{2} \]
Ans: a

Q. 1
Use Short cut method.
We get
\[\frac{\pi + 2}{4\pi} \]
Ans: a

Q. 14
Ans: C

Q. 15
Ans: d

Q. 16

use Short cut (K.S sir)

Ans: a
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>b</td>
</tr>
<tr>
<td>22</td>
<td>d</td>
</tr>
<tr>
<td>23</td>
<td>b</td>
</tr>
<tr>
<td>24</td>
<td>c</td>
</tr>
<tr>
<td>25</td>
<td>a</td>
</tr>
<tr>
<td>26</td>
<td>a</td>
</tr>
<tr>
<td>27</td>
<td>a</td>
</tr>
<tr>
<td>28</td>
<td>d</td>
</tr>
<tr>
<td>29</td>
<td>c</td>
</tr>
<tr>
<td>30</td>
<td>a (use short cut)</td>
</tr>
<tr>
<td>31</td>
<td>b</td>
</tr>
<tr>
<td>32</td>
<td>b (use short cut)</td>
</tr>
<tr>
<td>33</td>
<td>c</td>
</tr>
<tr>
<td>34</td>
<td>c</td>
</tr>
<tr>
<td>35</td>
<td>c</td>
</tr>
<tr>
<td>36</td>
<td>d</td>
</tr>
<tr>
<td>37</td>
<td>b</td>
</tr>
<tr>
<td>38</td>
<td>a</td>
</tr>
<tr>
<td>39</td>
<td>c</td>
</tr>
<tr>
<td>40</td>
<td>b</td>
</tr>
<tr>
<td>41</td>
<td>a</td>
</tr>
<tr>
<td>42</td>
<td>a</td>
</tr>
<tr>
<td>43</td>
<td>a</td>
</tr>
<tr>
<td>44</td>
<td>b</td>
</tr>
<tr>
<td>45</td>
<td>c</td>
</tr>
<tr>
<td>46</td>
<td>c</td>
</tr>
<tr>
<td>47</td>
<td>Key word Incident current density</td>
</tr>
<tr>
<td>48</td>
<td>b</td>
</tr>
<tr>
<td>49</td>
<td>Use KS Academy Short cut get the</td>
</tr>
<tr>
<td>50</td>
<td>a</td>
</tr>
<tr>
<td>51</td>
<td>d</td>
</tr>
<tr>
<td>52</td>
<td>Use KS Academy Short cut method</td>
</tr>
<tr>
<td>53</td>
<td>b</td>
</tr>
<tr>
<td>54</td>
<td>b</td>
</tr>
<tr>
<td>55</td>
<td>b</td>
</tr>
<tr>
<td>56</td>
<td>c</td>
</tr>
<tr>
<td>57</td>
<td>Use Short KS Short cut</td>
</tr>
</tbody>
</table>
| 58 | \(r = \frac{a_0}{\sqrt{3n^2 - 1}} \)
\(\ell (\ell + 1) \) |
| 59 | a |
| 60 | d |

K.S ACADEMY, SALEM PG TRB, POLYTECHNIC TRB & TNSET COACHING CENTRE FOR PHYSICS

CELL: 9042976707, 9047767620

Page 4